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Introduction & Motivation

e Neuromorphic sensing & computing (NSC) emerges as an alternative to
conventional digital computing with several potentially advantageous
characteristics, in particular its high energy efficiency and the exploitation
of temporal structure of input signals.

e Today or tomorrow detectors are pushing the challenges of low latency
and highly complex data and thus creates a new paradigm of Computing
and Sensing.

e Neuromorphic Sensing & Computing spans diverse applications from fun-

damental Physics research to next-generation particle detectors.

Material Study: Memristive Memory Devices
e Resistive Random Access Memory (ReRAM) is a promising candi-
date for building brain-like memory (synapses) and learning in
NSC hardware
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Fig. 1 a) Schematic of ReRAM device as switching layer b) Band gaps of Na3SbX4
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Fig. 2 Ion migration process in the switching layer of ReRAM
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Fig. 3 Resistive switching in ReRAM under varying voltage between Top/Bottom Electrodes (TE/BE)

Results: Novel chalcogen composites with suitable optoelectronic properties
for NSC devices

Summary
e NSC opens new horizons in the design of next-generation of particle detectors

e  Exploration of ReRAM materials for neuromorphic memory devices, Sb-based chalcogens identified to have suitable structural, and

optoelectronic properties

e  Considered in two applications: a) Accurate track reconstruction in silicon detectors with unsupervised learning
b) High-resolution Energy/position regression in calorimeters with reduced needs of physical granularity
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Application 1: Track Reconstruction

Challenge: In future collider experiments, particle collisions will generate
massively complex data and high background noise levels where traditional sens-
ing and computing may struggle to reconstruct tracks efficiently.
Neuromorphic Solution: Encoding of position of hits in silicon detectors
layers as temporal events (spikes) and use of Spiking Neural Network (SNN)
trained with unsupervised learning proven to reconstruct particle trajectories.

Results: 98% Track reconstruction accuracy, <3% false positives, and

demonstrated low-latency, energy-efficient tracking
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Fig. 4 Left: Side view of silicon detector with recorded hits. Right: Neuron activations (top) resulting from spike-timing encoding of hit positions (bottom)

Application 2: Granular Hadron Calorimeters
Challenge: Next-generation Hadron Calorimeters will need to
provide high granularity and time resolution, posing stringent
engineering and electronics demands.

Neuromorphic Solution: Application of SNN to regress energy
and spatial information from physical space-time distribution of
scintillation signals using spike-based input encoding.

Results: High-resolution regression, low-power & learnt spatio-
temporal patterns , power benefits, and reduced needs of physical

granularity.
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Fig. 5 Predicted vs True positions of light emission centroids (Top) and residuals (Bottom)
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