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Basic concepts



Definition

Image reconstruction is the procedure to produce a tomographic image from projections.

Tomographic image Projection
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Sinogram

Figure: A sinogram is a representation of the projections on the s-𝜃 plane.
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Backprojection

(𝑎)

(𝑏) (𝑐)

Figure: ”Reconstruction” of a point source. In (𝑎) some projections are taken from different positions. (𝑏) shows the obtained backprojection
using only those positions. (𝑐) shows the obtained shape after backprojecting from all positions.

Backprojection does most of the work, but we need some algorithm to reconstruct the original function.
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Mathematical definitions

Projection

𝑝(𝑠, 𝜃) = ∫
∞

−∞
∫

∞

−∞
𝑓(𝑥, 𝑦)𝛿(𝑥 cos 𝜃 + 𝑦 sin 𝜃 − 𝑠)𝑑𝑥𝑑𝑦

Backprojection

𝑏(𝑥, 𝑦) = ∫
𝜋

0
𝑝(𝑠, 𝜃)|𝑠=𝑥 cos 𝜃+𝑦 sin 𝜃 𝑑𝜃
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Analytic reconstruction algorithms



Central Slice Theorem (CST)

𝑃(𝜔, 𝜃) = 𝐹(𝜔 cos 𝜃,𝜔 sin 𝜃)

The 1D Fourier transform 𝑃(𝜔) of the projection 𝑝(𝑠) of a 2D function 𝑓(𝑥, 𝑦) is equal to a slice (i.e., a 1D profile) through the
origin of the 2D Fourier transform 𝐹(𝜔𝑥 , 𝜔𝑦) of that function which is parallel to the detector.
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Filtering

Over-weighting with low-frequency components blurs the image. This effect can be compensated in the Fourier space.

Multiply the 𝜔𝑥 − 𝜔𝑦 space Fourier ”image” by √𝜔2
𝑥 + 𝜔2

𝑦 .

Multiply the 1D Fourier transform 𝑃(𝜔, 𝜃) of the projection data 𝑝(𝑠, 𝜃) by |𝜔|.

Figure: The procedure of the filtered backprojection (FBP) algorithm.
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FBP algorithm

Starting with the 2D inverse Fourier transform in polar coordinates:

𝑓(𝑥, 𝑦) = ∫
2𝜋

0
∫

∞

0
𝐹polar (𝜔, 𝜃)𝑒2𝜋𝑖𝜔(𝑥 cos 𝜃+𝑦 sin 𝜃)𝜔𝑑𝜔𝑑𝜃 ; 𝐹𝑝𝑜𝑙𝑎𝑟(𝜔, 𝜃) = 𝐹𝑝𝑜𝑙𝑎𝑟(−𝜔, 𝜃 + 𝜋)

⟹ 𝑓(𝑥, 𝑦) = ∫
𝜋

0
∫

∞

−∞
𝐹polar (𝜔, 𝜃)|𝜔|𝑒2𝜋𝑖𝜔(𝑥 cos 𝜃+𝑦 sin 𝜃)𝑑𝜔𝑑𝜃

By using the central slice theorem, we can replace 𝐹 by 𝑃 :

𝑓(𝑥, 𝑦) = ∫
𝜋

0
∫

∞

−∞
𝑃(𝜔, 𝜃)|𝜔|𝑒2𝜋𝑖𝜔(𝑥 cos 𝜃+𝑦 sin 𝜃)𝑑𝜔𝑑𝜃.

Let 𝑄(𝜔, 𝜃) = |𝜔|𝑃(𝜔, 𝜃), then
𝑓(𝑥, 𝑦) = ∫

𝜋

0
∫

∞

−∞
𝑄(𝜔, 𝜃)𝑒2𝜋𝑖𝜔(𝑥 cos 𝜃+𝑦 sin 𝜃)𝑑𝜔𝑑𝜃.

𝑓(𝑥, 𝑦) = ∫
𝜋

0
𝑞(𝑥 cos 𝜃 + 𝑦 sin 𝜃, 𝜃)𝑑𝜃 = ∫

𝜋

0
𝑞(𝑠, 𝜃)|

𝑠=𝑥 cos 𝜃+𝑦 sin 𝜃
𝑑𝜃.
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Backprojection vs Filtered Backprojection

Figure: Reconstruction using 120 projections without ramp filter |𝜔| (left) and with ramp filter (right).
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Fourier transform properties

Multiplication in one domain corresponds to convolution in the other domain. The convolution of two functions 𝑓 and 𝑔
is defined as

(𝑓 ∗ 𝑔) = (𝑡) = ∫
∞

−∞
𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏

Multiplication by i2𝜋𝜔 in the Fourier domain corresponds to the derivative with respect to 𝑠 in the spatial domain.

The inverse Fourier transform of −𝑖sgn(𝜔) is 1/(𝜋𝑠). Convolution with 1/(𝜋𝑠) is called the Hilbert transform.

→ These properties can be used to create new reconstruction algorithms.
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Other filtering techniques

Method 1: FBP algorithm.

Method 2: The ramp-filtered data q(s, θ) can be obtained by convolution as:

𝑞(𝑠, 𝜃) = 𝑝(𝑠, 𝜃) ∗ ℎ(𝑠),

Here ℎ(𝑠) is the convolution kernel and is the 1D inverse Fourier transform of 𝐻(𝜔) = |𝜔|.

Method 3: Let’s factor the ramp filter into two parts:

𝐻(𝜔) = |𝜔| = 𝑖2𝜋𝜔 ⋅ 1
𝑖2𝜋 𝑠𝑔𝑛(𝜔) = 𝑖2𝜋𝜔 ⋅

−𝑖
2𝜋 𝑠𝑔𝑛(𝜔)

⟹ 𝑞(𝑠, 𝜃) = 𝑑𝑝(𝑠, 𝜃)𝑑𝑠 ∗ −1
2𝜋2𝑠
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Other filtering techniques

Method 4: Switch the order of ramp filtering and backprojection:

(𝑖) Find the 2D Fourier transform of the blurred image obtained after backprojection 𝑏(𝑥, 𝑦), obtaining 𝐵(𝜔𝑥 , 𝜔𝑦).

(𝑖𝑖) Multiply 𝐵 (𝜔𝑥 , 𝜔𝑦) with a ramp filter |𝜔| = √𝜔2
𝑥 + 𝜔2

𝑦 , obtaining 𝐹 (𝜔𝑥 , 𝜔𝑦).

(𝑖𝑖𝑖) Find the 2D inverse Fourier transform of 𝐹 (𝜔𝑥 , 𝜔𝑦), obtaining 𝑓(𝑥, 𝑦).

→ All the previous methods provide an exact reconstruction of the function 𝑓(𝑥, 𝑦).
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Fan-beam reconstruction

Figure: Comparison between parallel and fan beam reconstruction.
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Fan-beam geometry

𝜃 = 𝛾 + 𝛽

𝑠 = 𝐷 sin 𝛾

A fan-beam ray can be represented using the parallel-beam geometry parameters.
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Fan-beam algorithms

Figure: The procedure to change a parallel-beam algorithm into a fan-beam algorithm.
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Peculiarities of fan-beam reconstruction

Possibility of short scan.

Extra dependence on the distance between focal point and reconstruction point, leading to more unstable algorithms
and more computation time.

→ Derivative + Hilbert transform algorithm gets rid of this problem.

Redundant measurements even when short scanning.

→ Proper weighting during image reconstruction is needed.

In real implementation, the integral ℎ(𝛾) = ∫∞−∞ |𝜔|𝑒
𝑖2𝜋𝜔𝛾𝑑𝜔 (inverse Fourier transform of |𝜔|) is not performed from −∞

to +∞, but a finite bandwidth is used. The uncertainties coming from this step can become important when short scan
is employed.
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3D image reconstruction



Parallel line-integral data

Figure: Central slice theorem for the 3D line-integral projections.

If 𝜃⃗ follows the trajectory of a great circle, the
(𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧) Fourier space is filled up.
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Cone-beam data

Figure: Cone beam data acquisition. There is no equivalent Central Slice Theorem.
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Algebraic reconstruction



Algebraic reconstruction

Figure: An example with nine unknowns and nine measurements.

System of linear equations written in matrix form:

𝐴𝑋 = 𝑃

where

𝑋 = [𝑥1, 𝑥2, ..., 𝑥9]𝑇

𝑃 = [𝑝1, 𝑝2, ..., 𝑝9]𝑇

𝐴 ≡ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑚𝑎𝑡𝑟𝑖𝑥

Inverting to obtain the desired matrix X:

𝑋 = 𝐴−1𝑃

In general, calculate 𝐴−1 is not an easy task.
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Iterative reconstruction

Usually the matrix A is too large to be stored in a computer, so it is generated one row at a time.

⟹ Iterative methods that only use 𝐴 and 𝐴𝑇 make sense in finding an approximate solution.

A good approach is to set up an objective function and minimise/maximise it.

Least-squares minimisation: 𝜒2 = |𝐴𝑋 − 𝑃|2

• Use of singular value decomposition (SVD) to find a pseudo-inverse.

• Gradient descent.

Maximise the likelihood of the probability density function associated with the noise in the projections.
A Poisson distribution can be assumed.
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FBP vs Iterative reconstruction

Figure: Comparison between the reconstruction obtained by filtered backprojection (a) and iterative reconstruction (b).
Source: D. Fursevich et al., ”Bariatric CT Imaging: Challenges and Solutions”.
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How to measure the projections

Beer’s law

The attenuation of X-rays along a line of material can be modeled using the Beer’s law.

Figure: Attenuation along a line.

𝐼𝑑 = 𝐼0𝑒−∫𝐿 𝜇(𝑥)𝑑𝑥 = 𝐼0𝑒−𝑝

𝑝 = 𝑙𝑛 (
𝐼0
𝐼𝑑
)
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Summary



Summary

Projection and backprojection are the fundamental concepts in image reconstruction.

The Central Slice Theorem is a key tool to develop analytic image reconstruction algorithms.

The algorithms must be adapted for the different geometries: parallel or fan beams.

3D image reconstruction can be achieved based on the same principles.

Lately, iterative image reconstruction algorithms are getting more and more attention in medical image reconstruction.

The projections are obtained by measuring the attenuation of the radiation through the body.
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Appendix: Central Slice Theorem demonstration

We start with the definition of the 1D Fourier transform:

𝑃(𝜔) = ∫
∞

−∞
𝑝(𝑠)𝑒−2𝜋𝑖𝑠𝜔𝑑𝑠,

then use the definition of 𝑝(𝑠, 𝜃), obtaining

𝑃(𝜔, 𝜃) = ∫
∞

−∞
[∫

∞

−∞
∫

∞

−∞
𝑓(𝑥, 𝑦)𝛿(𝑥 cos 𝜃 + 𝑦 sin 𝜃 − 𝑠)𝑑𝑥𝑑𝑦] 𝑒−2𝜋𝑖𝑠𝜔𝑑𝑠.

Changing the order of integrals yields

𝑃(𝜔, 𝜃) = ∫
∞

−∞
∫

∞

−∞
𝑓(𝑥, 𝑦) [∫

∞

−∞
𝛿(𝑥 cos 𝜃 + 𝑦 sin 𝜃 − 𝑠)𝑒−2𝜋𝑖𝑠𝜔𝑑𝑠] 𝑑𝑥𝑑𝑦.

Using the property of the 𝛿 function, the inner integral over 𝑠 can be readily obtained and we have

𝑃(𝜔, 𝜃) = ∫
∞

−∞
∫

∞

−∞
𝑓(𝑥, 𝑦)𝑒−2𝜋𝑖(𝑥 cos 𝜃+𝑦 sin 𝜃)𝜔𝑑𝑥𝑑𝑦,

that is,
𝑃(𝜔, 𝜃) = ∫

∞

−∞
∫

∞

−∞
𝑓(𝑥, 𝑦)𝑒−2𝜋𝑖(𝑥𝑢+𝑦𝑣)|

𝑢=𝜔 cos 𝜃,𝑣=𝜔 sin 𝜃
𝑑𝑥𝑑𝑦.

Finally, using the definition of the 2D Fourier transform yields

𝑃(𝜔, 𝜃) = 𝐹 (𝜔𝑥 , 𝜔𝑦)|𝜔𝑥=𝜔 cos 𝜃,𝜔𝑦=𝜔 sin 𝜃
.
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