

Image Reconstruction

Alberto Saborido Patiño

May 22, 2024

Fakultät Physik

Detector systems in particle and medical physics

[Basic concepts](#page-2-0)

[Analytic reconstruction algorithms](#page-12-0)

[3D image reconstruction](#page-37-0)

[Algebraic reconstruction](#page-41-0)

[Summary](#page-51-0)

Reference: *Zeng, G. (2023). Medical Image Reconstruction: From Analytical and Iterative Methods to Machine Learning. Berlin, Boston: De Gruyter.*

[Basic concepts](#page-2-0)

Image reconstruction is the procedure to produce a **tomographic image** from **projections**.

Image reconstruction is the procedure to produce a **tomographic image** from **projections**.

Tomographic image

Image reconstruction is the procedure to produce a **tomographic image** from **projections**.

■ Tomographic image Projection

Sinogram

Figure: A sinogram is a representation of the projections on the s - θ plane.

Alberto Saborido | May 22, 2024 **[Basic concepts](#page-2-0)** 5 / 30

Backprojection

Figure: "Reconstruction" of a point source. In (a) some projections are taken from different positions. (b) shows the obtained backprojection using only those positions. (c) shows the obtained shape after backprojecting from all positions.

Backprojection

Figure: "Reconstruction" of a point source. In (a) some projections are taken from different positions. (b) shows the obtained backprojection using only those positions. (c) shows the obtained shape after backprojecting from all positions.

Backprojection does most of the work, but we need some algorithm to reconstruct the original function.

Mathematical definitions

[Analytic reconstruction algorithms](#page-12-0)

Central Slice Theorem (CST)

The 1D Fourier transform $P(\omega)$ of the projection $p(s)$ of a 2D function $f(x, y)$ is equal to a slice (i.e., a 1D profile) through the origin of the 2D Fourier transform $F(\omega_{_X},\omega_{_Y})$ of that function which is parallel to the detector.

Over-weighting with low-frequency components blurs the image. This effect can be compensated in the Fourier space.

Multiply the ω_x – ω_y space Fourier "image" by $\sqrt{\omega_x^2 + \omega_y^2}$.

Multiply the 1D Fourier transform $P(\omega, \theta)$ of the projection data $p(s, \theta)$ by $|\omega|$.

Figure: The procedure of the filtered backprojection (FBP) algorithm.

Starting with the 2D inverse Fourier transform in polar coordinates:

$$
f(x,y) = \int_0^{2\pi} \int_0^{\infty} F_{\text{polar}}(\omega,\theta) e^{2\pi i \omega(x \cos \theta + y \sin \theta)} \omega d\omega d\theta \quad ; \qquad F_{\text{polar}}(\omega,\theta) = F_{\text{polar}}(-\omega,\theta + \pi)
$$

$$
\implies f(x,y) = \int_0^{\pi} \int_{-\infty}^{\infty} F_{\text{polar}}(\omega,\theta) |\omega| e^{2\pi i \omega(x \cos \theta + y \sin \theta)} d\omega d\theta
$$

Starting with the 2D inverse Fourier transform in polar coordinates:

$$
f(x, y) = \int_0^{2\pi} \int_0^{\infty} F_{\text{polar}}(\omega, \theta) e^{2\pi i \omega(x \cos \theta + y \sin \theta)} \omega d\omega d\theta \quad ; \qquad F_{\text{polar}}(\omega, \theta) = F_{\text{polar}}(-\omega, \theta + \pi)
$$

$$
\implies f(x, y) = \int_0^{\pi} \int_{-\infty}^{\infty} F_{\text{polar}}(\omega, \theta) |\omega| e^{2\pi i \omega(x \cos \theta + y \sin \theta)} d\omega d\theta
$$

By using the central slice theorem, we can replace F by P :

$$
f(x,y)=\int_0^\pi\int_{-\infty}^\infty P(\omega,\theta)|\omega|e^{2\pi i\omega(x\cos\theta+y\sin\theta)}d\omega d\theta.
$$

Starting with the 2D inverse Fourier transform in polar coordinates:

$$
f(x, y) = \int_0^{2\pi} \int_0^{\infty} F_{\text{polar}}(\omega, \theta) e^{2\pi i \omega(x \cos \theta + y \sin \theta)} \omega d\omega d\theta \quad ; \qquad F_{\text{polar}}(\omega, \theta) = F_{\text{polar}}(-\omega, \theta + \pi)
$$

$$
\implies f(x, y) = \int_0^{\pi} \int_{-\infty}^{\infty} F_{\text{polar}}(\omega, \theta) |\omega| e^{2\pi i \omega(x \cos \theta + y \sin \theta)} d\omega d\theta
$$

By using the central slice theorem, we can replace F by P :

$$
f(x,y)=\int_0^\pi\int_{-\infty}^\infty P(\omega,\theta)|\omega|e^{2\pi i\omega(x\cos\theta+y\sin\theta)}d\omega d\theta.
$$

Let $Q(\omega, \theta) = |\omega| P(\omega, \theta)$, then

$$
f(x,y) = \int_0^{\pi} \int_{-\infty}^{\infty} Q(\omega,\theta) e^{2\pi i \omega(x \cos \theta + y \sin \theta)} d\omega d\theta.
$$

$$
f(x,y) = \int_0^{\pi} q(x \cos \theta + y \sin \theta, \theta) d\theta = \int_0^{\pi} q(s,\theta) \Big|_{s = x \cos \theta + y \sin \theta} d\theta.
$$

Backprojection vs Filtered Backprojection

Figure: Reconstruction using 120 projections without ramp filter $|\omega|$ (left) and with ramp filter (right).

Multiplication in one domain corresponds to convolution in the other domain. The convolution of two functions f and g is defined as ∞

$$
(f * g) = (t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau
$$

Multiplication in one domain corresponds to convolution in the other domain. The convolution of two functions f and g is defined as ∞

$$
(f * g) = (t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau
$$

Multiplication by i2 $\pi\omega$ in the Fourier domain corresponds to the derivative with respect to s in the spatial domain.

Multiplication in one domain corresponds to convolution in the other domain. The convolution of two functions f and q is defined as ∞

$$
(f * g) = (t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau
$$

- Multiplication by i2 $\pi\omega$ in the Fourier domain corresponds to the derivative with respect to s in the spatial domain.
- **The inverse Fourier transform of −isgn(** ω **) is 1/(** π **s).** Convolution with 1/(π s) is called the Hilbert transform.

Multiplication in one domain corresponds to convolution in the other domain. The convolution of two functions f and q is defined as ∞

$$
(f * g) = (t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau
$$

- Multiplication by i2 $\pi\omega$ in the Fourier domain corresponds to the derivative with respect to s in the spatial domain.
- **The inverse Fourier transform of –isgn(** ω **) is 1/(** π **s).** Convolution with 1/(π s) is called the Hilbert transform.

 \rightarrow These properties can be used to create new reconstruction algorithms.

Method 1: FBP algorithm.

Method 2: The ramp-filtered data $q(s, \theta)$ can be obtained by convolution as:

 $q(s, \theta) = p(s, \theta) * h(s),$

Here $h(s)$ is the convolution kernel and is the 1D inverse Fourier transform of $H(\omega) = |\omega|$.

Method 1: FBP algorithm.

Method 2: The ramp-filtered data $q(s, \theta)$ can be obtained by convolution as:

$$
q(s,\theta)=p(s,\theta)*h(s),
$$

Here $h(s)$ is the convolution kernel and is the 1D inverse Fourier transform of $H(\omega) = |\omega|$.

Method 3: Let's factor the ramp filter into two parts:

$$
H(\omega) = |\omega| = i2\pi\omega \cdot \frac{1}{i2\pi} sgn(\omega) = i2\pi\omega \cdot \frac{-i}{2\pi} sgn(\omega)
$$

$$
\implies q(s, \theta) = \frac{dp(s, \theta)}{ds} \times \frac{-1}{2\pi^2 s}
$$

Method 4: Switch the order of ramp filtering and backprojection:

(i) Find the 2D Fourier transform of the blurred image obtained after backprojection $b(x,y)$, obtaining $B(\omega_x,\omega_y)$.

 (ii) Multiply $B\left(\omega_{_X},\omega_{_Y}\right)$ with a ramp filter $|\,\omega\,|$ = $\sqrt{\omega_{_X}^2+\omega_{_Y}^2}$ obtaining $F\left(\omega_{_X},\omega_{_Y}\right)$.

(iii) Find the 2D inverse Fourier transform of $F\left({\omega _{_{X}}},{\omega _{_{Y}}}\right)$, obtaining $f(x,y)$.

Method 4: Switch the order of ramp filtering and backprojection:

(i) Find the 2D Fourier transform of the blurred image obtained after backprojection $b(x,y)$, obtaining $B(\omega_x,\omega_y)$.

(*ii*) Multiply
$$
B(\omega_x, \omega_y)
$$
 with a ramp filter $|\omega| = \sqrt{\omega_x^2 + \omega_y^2}$, obtaining $F(\omega_x, \omega_y)$.

(iii) Find the 2D inverse Fourier transform of $F\left({\omega _{_{X}}},{\omega _{_{Y}}}\right)$, obtaining $f(x,y)$.

 \rightarrow All the previous methods provide an exact reconstruction of the function $f(x, y)$.

Fan-beam reconstruction

Figure: Comparison between parallel and fan beam reconstruction.

A fan-beam ray can be represented using the parallel-beam geometry parameters.

Figure: The procedure to change a parallel-beam algorithm into a fan-beam algorithm.

Possibility of short scan.

- **Possibility of short scan.**
- Extra dependence on the distance between focal point and reconstruction point, leading to more unstable algorithms and more computation time.
	- \rightarrow Derivative + Hilbert transform algorithm gets rid of this problem.
- **Possibility of short scan.**
- Extra dependence on the distance between focal point and reconstruction point, leading to more unstable algorithms and more computation time.
	- \rightarrow Derivative + Hilbert transform algorithm gets rid of this problem.
- Redundant measurements even when short scanning.
	- → Proper weighting during image reconstruction is needed.
- **Possibility of short scan.**
- Extra dependence on the distance between focal point and reconstruction point, leading to more unstable algorithms and more computation time.
	- \rightarrow Derivative + Hilbert transform algorithm gets rid of this problem.
- \blacksquare Redundant measurements even when short scanning.
	- → Proper weighting during image reconstruction is needed.
- In real implementation, the integral $h(y) = \int_{-\infty}^{\infty} |\omega| e^{i2\pi\omega y} d\omega$ (inverse Fourier transform of $|\omega|$) is not performed from –∞ to +∞, but a finite bandwidth is used. The uncertainties coming from this step can become important when short scan is employed.

[3D image reconstruction](#page-37-0)

Parallel line-integral data

Figure: Central slice theorem for the 3D line-integral projections.

Parallel line-integral data

Figure: Central slice theorem for the 3D line-integral projections.

Figure: Cone beam data acquisition. There is no equivalent Central Slice Theorem.

[Algebraic reconstruction](#page-41-0)

Algebraic reconstruction

System of linear equations written in matrix form:

 $AX = P$

where

$$
X = [x_1, x_2, ..., x_9]^T
$$

$$
P = [p_1, p_2, ..., p_9]^T
$$

$$
A = weighting matrix
$$

Figure: An example with nine unknowns and nine measurements.

Algebraic reconstruction

System of linear equations written in matrix form:

 $AX = P$

where

$$
X = [x_1, x_2, ..., x_9]^T
$$

$$
P = [p_1, p_2, ..., p_9]^T
$$

$$
A \equiv weighting matrix
$$

Inverting to obtain the desired matrix X:

 $X = A^{-1}P$

In general, calculate A^{-1} is not an easy task.

Figure: An example with nine unknowns and nine measurements.

 \implies Iterative methods that only use **A** and A^T make sense in finding an approximate solution.

 \implies Iterative methods that only use **A** and A^T make sense in finding an approximate solution.

A good approach is to set up an objective function and minimise/maximise it.

 \implies Iterative methods that only use **A** and A^T make sense in finding an approximate solution.

A good approach is to set up an objective function and minimise/maximise it.

- Least-squares minimisation: $\chi^2 = |AX P|^2$
	- Use of singular value decomposition (SVD) to find a pseudo-inverse.
	- Gradient descent.

 \implies Iterative methods that only use **A** and A^T make sense in finding an approximate solution.

A good approach is to set up an objective function and minimise/maximise it.

- Least-squares minimisation: $\chi^2 = |AX P|^2$
	- Use of singular value decomposition (SVD) to find a pseudo-inverse.
	- Gradient descent.
- Maximise the likelihood of the probability density function associated with the noise in the projections. A Poisson distribution can be assumed.

FBP vs Iterative reconstruction

Figure: Comparison between the reconstruction obtained by filtered backprojection (a) and iterative reconstruction (b). Source: D. Fursevich *et al.*, "Bariatric CT Imaging: Challenges and Solutions".

Beer's law

The attenuation of X-rays along a line of material can be modeled using the Beer's law.

[Summary](#page-51-0)

- Projection and backprojection are the fundamental concepts in image reconstruction.
- The Central Slice Theorem is a key tool to develop analytic image reconstruction algorithms.
- The algorithms must be adapted for the different geometries: parallel or fan beams.
- 3D image reconstruction can be achieved based on the same principles.
- Lately, iterative image reconstruction algorithms are getting more and more attention in medical image reconstruction.
- The projections are obtained by measuring the attenuation of the radiation through the body.

We start with the definition of the 1D Fourier transform:

$$
P(\omega)=\int_{-\infty}^{\infty}p(s)e^{-2\pi is\omega}ds,
$$

then use the definition of $p(s, \theta)$, obtaining

$$
P(\omega,\theta)=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)\delta(x\cos\theta+y\sin\theta-s)dxdy\right]e^{-2\pi is\omega}ds.
$$

Changing the order of integrals yields

$$
P(\omega,\theta)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)\Biggl[\int_{-\infty}^{\infty}\delta(x\cos\theta+y\sin\theta-s)e^{-2\pi is\omega}ds \Biggr]dxdy.
$$

Using the property of the δ function, the inner integral over s can be readily obtained and we have

$$
P(\omega,\theta)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)e^{-2\pi i(x\cos\theta+y\sin\theta)\omega}dxdy,
$$

that is,

$$
P(\omega,\theta)=\left.\int_{-\infty}^\infty\int_{-\infty}^\infty f(x,y)e^{-2\pi i(xu+yv)}\right|_{u=\omega\cos\theta, v=\omega\sin\theta}dxdy.
$$

Finally, using the definition of the 2D Fourier transform yields

$$
P(\omega,\theta) = F(\omega_x,\omega_y)|_{\omega_x = \omega \cos \theta, \omega_y = \omega \sin \theta}
$$

.