Análisis de la multiplicidad de partículas cargadas asociadas a mesones ϕ en colisiones protón-nucleo en el experimento LHCb del CERN

Alberto Saborido Patiño

Tutor: Cibrán Santamarina Ríos Cotutor: Óscar Boente García Trabajo de Fin de Grado

17 de febrero de 2022

Introducción

2 Enfoque experimental

3 Análisis

臣

Índice

1 Introducción

2 Enfoque experimental

3 Análisis

5 Conclusiones

Contexto teórico y motivación

- El estado de la materia de Plasma de Quark-Gluon se recrea en colisiones de núcleos pesados.
- La producción de partículas con quarks s (extrañeza) en colisiones de altas energías es un buen indicador de la presencia de Plasma de Quark-Gluon.
- En medidas recientes se observa que la producción de extrañeza en colisiones protón-núcleo de alta multiplicidad alcanza valores comparables a los producidos en colisiones núcleo-núcleo.

Cinemática de las colisiones

• Rapidez: $y = \frac{1}{2} \ln \frac{E+p_z}{E-p_z}$

• Momento transverso (p_T)

Observables

$$\operatorname{RCP}(X)_{High/Low} = \frac{(dN/dX)_{High}}{(dN/dX)_{Low}} \quad ; \quad \operatorname{RCP}(X)_{High/Medium} = \frac{(dN/dX)_{High}}{(dN/dX)_{Medium}}$$

$$\mathscr{R}(X)_{High/Low} = \left. \frac{\mathrm{RCP}(X)_{pA}}{\mathrm{RCP}(X)_{Ap}} \right|_{\frac{High}{Low}} \quad ; \quad \mathscr{R}(X)_{High/Medium} = \left. \frac{\mathrm{RCP}(X)_{pA}}{\mathrm{RCP}(X)_{Ap}} \right|_{\frac{High}{Medium}}$$

$$X = p_T, \ y^*$$

A 1		<u> </u>		< . • ~
A	herto	50	horic	ntino
~	Derto	Jai		auno

▶ < ∃ >

æ

Efectos nucleares

Introducción

2 Enfoque experimental

3 Análisis

5 Conclusiones

$\mathsf{LHC}b$

イロト イヨト イヨト イヨト

æ

El mesón ϕ

- Es el estado ligado de quarks extraños más ligero.
- $M = 1019,461 \pm 0,016 \text{ MeV}/c^2$
- $\Gamma=4,249\pm0,013~{\rm MeV}/c^2$
- $\bullet\,$ Su modo de desintegración más común es a una pareja de kaones $K^+K^-.$

El mesón ϕ

- Es el estado ligado de quarks extraños más ligero.
- $M = 1019, 461 \pm 0, 016 \; {\rm MeV}/c^2$
- $\Gamma=4,249\pm0,013~{\rm MeV}/c^2$
- $\bullet\,$ Su modo de desintegración más común es a una pareja de kaones $K^+K^-.$

$$M \equiv E_{cm} = \sqrt{(E_1 + E_2)^2 - (\mathbf{p_1} + \mathbf{p_2})^2}$$

Índice

Introducción

2 Enfoque experimental

5 Conclusiones

Alberto Saborido Patiño

Determinación de las clases de multiplicidad

 $N_{VELO} \equiv$ número de trazas reconstruidas en el VELO.

Determinación de las clases de multiplicidad

Determinación de las clases de multiplicidad

	N_{Ch}	$N_{VELO}(Pbp)$	$N_{VELO}(pPb)$
Low - Medium	127	120	104
multiplicity boundary	137	120	104
Medium - High	222	105	160
multiplicity boundary	222	195	109

Extracción de la señal

pA configuration p_x ∈ [1000.0, 1500.0] MeV/c Low multiplicity Data
Total fit
Voigtian
Background 1200 1000 600 400 200 Medium multiplicity 400 200 ----700 Events / (0.58 MeV/c² High multiplicity 600 500 400 300 200 100 1000 1010 1030 $M(K^{+}K^{-})~(MeV/c^{2})$

Extracción de la señal

pA configuration $y^* \in [2.5, 3.0]$

Mesones ϕ detectados

Alberto Saborido Patiño

Trabajo de Fin de Grado

17 de febrero de 2022 18 / 24

Índice

Introducción

2 Enfoque experimental

3 Análisis

5 Conclusiones

RCP

20 / 24

17 de febrero de 2022 21 / 2

Índice

1 Introducción

2 Enfoque experimental

3 Análisis

5 Conclusiones

Conclusiones

- Primera medida de la dependencia de la multiplicidad en la producción de extrañeza en el rango cinemático escogido en el experimento LHCb
- Los resultados muestran tendencias interpretables con el efecto Cronin y el efecto de saturación.
- Posible continuación del estudio.

Referencias

- [1] J. Adam *et al.*, " ϕ -meson production at forward rapidity in p-Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV and in pp collisions at $\sqrt{s} = 2.76$ TeV," *Phys. Lett. B*, vol. 768, pp. 203–217, 2017.
- [2] R. Aaij *et al.*, "LHCb Detector Performance," Int. J. Mod. Phys. A, vol. 30, no. 07, p. 1530022, 2015.